Biophysical and functional characterization of full-length, recombinant human tissue inhibitor of metalloproteinases-2 (TIMP-2) produced in Escherichia coli. Comparison of wild type and amino-terminal alanine appended variant with implications for the mechanism of TIMP functions.
نویسندگان
چکیده
Matrix metalloproteinases (MMPs) function in the remodeling of the extracellular matrix that is integral for many normal and pathological processes. The tissue inhibitor of metalloproteinases family, including tissue inhibitor of metalloproteinases-2 (TIMP-2), regulates the activity of these multifunctional metalloproteinases. TIMP family members are proteinase inhibitors that contain six conserved disulfide bonds, one involving an amino-terminal cysteine residue that is critical for MMP inhibitor activity. TIMP-2 has been expressed in Escherichia coli, folded from insoluble protein, and functionally characterized. The wild type protein inhibited gelatinase A (MMP-2), whereas a variant with an alanine appended to the amino terminus (Ala+TIMP-2) was inactive. Removal of amino-terminal alanine by exopeptidase digestion restored protease inhibitor activity. This confirms the mechanistic importance of the amino-terminal amino group in the metalloproteinase inhibitory activity, as originally suggested from the x-ray structure of a complex of MMP-3 with TIMP-1 and a complex of TIMP-2 with MT-1-MMP. The Ala+TIMP-2 variant exhibited conformational, pro-MMP-2 complex formation and fibroblast growth modulating properties of the wild type protein. These findings demonstrate that Ala+TIMP-2 is an excellent biochemical tool for examining the specific role of MMP inhibition in the multiple functions ascribed to TIMPs.
منابع مشابه
Functional Characterization of Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) N- and C-Terminal Domains during Xenopus laevis Development
Extracellular matrix (ECM) remodeling is essential for facilitating developmental processes. ECM remodeling, accomplished by matrix metalloproteinases (MMPs), is regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs). While the TIMP N-terminal domain is involved in inhibition of MMP activity, the C-terminal domain exhibits cell-signaling activity, which is TIMP and cell type de...
متن کاملLocalization of the functional domains of human tissue inhibitor of metalloproteinases-3 and the effects of a Sorsby's fundus dystrophy mutation.
A transient COS-7 cell expression system was used to investigate the functional domain arrangement of tissue inhibitor of metalloproteinases-3 (TIMP-3), specifically to assess the contribution of the amino- and carboxyl-terminal domains of the molecule to its matrix metalloproteinase (MMP) inhibitory and extracellular matrix (ECM) binding properties. Wild type TIMP-3 was entirely localized to t...
متن کاملLocalization of the death domain of tissue inhibitor of metalloproteinase-3 to the N terminus. Metalloproteinase inhibition is associated with proapoptotic activity.
The tissue inhibitors of metalloproteinases (TIMPs) are a family of four secreted inhibitors of matrix metalloproteinases (MMPs). Recently, additional functions have been attributed to the TIMPs, including cell growth and inhibition of angiogenesis. In particular, we demonstrated that TIMP-3 overexpression using gene transfer induces apoptosis in a variety of cell types and can inhibit vascular...
متن کاملDomain structure of human 72-kDa gelatinase/type IV collagenase. Characterization of proteolytic activity and identification of the tissue inhibitor of metalloproteinase-2 (TIMP-2) binding regions.
The 72-kDa gelatinase/type IV collagenase, a metalloproteinase thought to play a role in metastasis and in angiogenesis, forms a noncovalent stoichiometric complex with the tissue inhibitor of metalloproteinase-2 (TIMP-2), a potent inhibitor of enzyme activity. To define the regions of the 72-kDa gelatinase responsible for TIMP-2 binding, a series of NH2- and COOH-terminal deletions of the enzy...
متن کاملEngineering N-terminal domain of tissue inhibitor of metalloproteinase (TIMP)-3 to be a better inhibitor against tumour necrosis factor-alpha-converting enzyme.
We previously reported that full-length tissue inhibitor of metalloproteinase-3 (TIMP-3) and its N-terminal domain form (N-TIMP-3) displayed equal binding affinity for tissue necrosis factor-alpha (TNF-alpha)-converting enzyme (TACE). Based on the computer graphic of TACE docked with a TIMP-3 model, we created a number of N-TIMP-3 mutants that showed significant improvement in TACE inhibition. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 274 30 شماره
صفحات -
تاریخ انتشار 1999